Dr. Anna Dittrich
Aktuelle Projekte
Signalproteine als intrazelluläre Zielstrukturen für Peptide: ein neuer, gezielter, molekular-therapeutischer Ansatz
Laufzeit: 01.04.2024 bis 31.12.2027
Die Homöostase eines Organismus wird durch lösliche Mediatoren wie Hormone und Zytokine reguliert. Diese Botenstoffe aktivieren diverse intrazelluläre Signalwege, die in komplexen Netzwerken interagieren. Die zeitliche und räumliche Orchestrierung dieser Signalwege wird streng kontrolliert. Eine nicht ausbalancierte Aktivierung der Signalwege führt zu schweren immunologischen, entzündlichen oder proliferativen Krankheiten. Eine besondere Bedeutung in der Verschaltung dieser Signalwege nehmen "multi-site docking" Proteine wie Gab1 ein. Eine Fehlregulation von Gab1 wird unter anderem bei Brust- und Darmkrebs sowie bei Leukämien beschrieben. Multi-site docking Proteine haben keine enzymatische Funktion, sondern vermitteln über Protein-Protein Interaktionen zwischen verschiedenen anderen Signalmolekülen die Vernetzung diverser Signalwege. "multi-site docking" Proteine integrieren somit – fast wie ein molekularer Computer – verschiedene Signalwege. Dies macht sie zu vielversprechenden Zielen in der Entwicklung neuer Therapieansätze. Die große Bedeutung von Gab1 in physiologisch und patho-physiologisch wichtigen zellulären Prozessen ermutigt uns Gab1 als therapeutisches Ziel in den Vordergrund zu bringen.
Die zurzeit vorherrschenden therapeutischen Strategien basieren auf der Blockade spezifischer extrazellulärer Signalkomponenten (z. B. Rezeptoren, Mediatoren) mit Biologicals, wie z.B. therapeutischen Antikörpern, oder auf der Hemmung intrazellulärer Signalproteine (z. B. Kinasen) mit Zell-durchlässigen, pharmakologischen Inhibitoren. Jedoch ist der Einsatz solcher Inhibitoren durch unspezifische "off-targets" und die primäre Wirkung gegen Signalproteine mit enzymatischer Funktion eingeschränkt. Das für die Signalintegration essenzielle intrazelluläre Gab1 kann jedoch nicht durch Inhibitoren gehemmt werden, da es keine enzymatische Funktion hat. Wir postulieren daher die Anwendung von therapeutischen Peptiden zur gezielten Kontrolle der Gab1 Funktion. Peptide sind kurze Aminosäureketten mit geringer Größe. Die hohe Bindungsspezifität von Peptiden und die Möglichkeit in nicht enzymatische Prozesse wie Protein-Protein Interaktionen einzugreifen, eröffnen die Möglichkeit gezielt die Funktion von Gab1 zu steuern. Bisher ist der Einsatz von therapeutischen Peptiden wegen ihrer geringen Zellpermeabilität und kurzen Halblebenszeit schwierig und beschränkt sich primär auf extrazelluläre Anwendungen.
Decrypting the pleiotropic role of the immune checkpoint molecule, ICOS-Ligand, in immunoconversion of pro-inflammatory to pro-senescence endothelial cell phenotype in cardiovascular diseases
Laufzeit: 01.12.2023 bis 15.12.2025
1. State-of the Art and Key Research Question(s): Coronary Artery Disease (CAD) pathophysiology is initiated when coronary arteries supplying blood to the heart are being blocked with the accumulating plaques, forming varying degree of fatty streaks, built from inflammatory cells, including monocytes derived macrophages and lymphocytes [3-5]. These blood patrolling immune cells attain an inflammatory state in response to the signals delivered by a dysfunctional endothelium, which is initially caused by deposition and subsequent physicochemical modification of circulating low-density lipoproteins (LDL) in subendothelial spaces. Further, the oxidized lipid ladened pathological macrophages residing at subendothelial spaces produce excessive reactive oxygen species (ROS) and proinflammatory cytokines, including IL-6, which decreases nitric oxide bioavailability and substantially increases oxidative stress in the plaque microenvironment. Under these circumstances, the damaged endothelium releases VWF, which is not only best known for its role in hemostasis and thrombosis, supporting platelet adhesion and aggregation, but also plays a central role in vascular inflammation, favoring leukocyte recruitment and extravasation. Such a constant stimulus, including oxidative stress, initiates endothelial senescence, the process characterized by cell cycle arrest and changes in pro-inflammatory gene expression, in the vasculature. With regard to vascular inflammation in CAD patients, we consider a shift from pro-inflammatory to the pro - senescence state of a vascular endothelium as a key decision point that must be focused and targeted to mitigate the conversion of senescence. This is highly essential because senescence associated with vascular endothelium secretes senescence associated secretory phenotypes (SASP), in addition to many dramatic changes occurring at the intracellular level. Further, endothelial-SASP aggravates and sustain chronic inflammation throughout the lifetime of a CAD patient, which lowers the quality of autologous vessel when used for coronary artery bypass graft (CABG) surgery, as CABG still is considered as a gold standard method for multivessel coronary artery disease. These autologous bypass grafts (vessels) are highly prone to getting occluded with thrombus and therefore exhibit a poor long-term potency, which evidently raises the question on the quality of autologous vessel. Of note, vascular endothelial senescence was evident in arterial diseases. Apart, it has been reported that the ligand for inducible costimulator (ICOS-L) were increasingly expressed on an activated endothelium, under the influence of proinflammatory cytokines. The ICOS-L is one of the immune checkpoint molecule that binds to ICOS, expressed on activated T cells, where the ICOS-L/ICOS axis exhibits multifaceted role in immune function, including polarization towards (i) TH1 immunity; (ii) TH2 immunity; (iii) TH17 immunity; (iv) Tregs immunity; (v) germinal center formation and B cell immunity in antibody production. However, the potential role of ICOS-L in inducing or preventing endothelial senescence is not yet explored and is therefore largely unknown.
1.2 Unresolved key questions: Since cardiovascular inflammation diseases remains to be the first leading cause of death globally, we intend to stamp on critical window phase where the transformation of vascular endothelium occurs from pro-inflammatory to pro-senescence state, with the aim of preserving the quality of vessels, thereby avoiding further worsening from chronic inflammation due to senescence and thereby to subsequently increase the patency rate when used for CABG surgery. For this purpose, we explore an in-depth role of ICOS-L/ICOS axis in this above-mentioned decision phase in the presence of atherosclerotic progressive factors.
A. The atherosclerosis related soluble factors, including vWF, blood clotting factors and immune cell associated cytokines, IL-6, IL-1ß, IL-8 increase the endothelial transmembrane expression level of ICOS-L will be explored
B. Despite increased ICOS-L expression, the knowledge of its functional significance on vascular endothelium is largely unknown and will therefore be addressed during the state of (i) initial inflammation, (ii) progressive inflammation and (iii) transformation of inflammation to senescence. This will be achieved by determining the recruitment of intracellular anti-senescence molecules, including SIRTUIN-1 and FOXO1, where these pathways will be thoroughly investigated. Here, we intend to employ the ApoE-/-atherosclerotic mouse model, ICOS-L transgenic and knockout mouse to investigate the senomorphic role of ICOS-L in vivo as well as in vitro, with endothelial cell culture systems, with ICOS-L overexpression and ICOS-L knockout using CRIPSR-Cas9 tools.
Intravascular crosstalk of interleukin-6 and therapeutic glucocorticoids in SARS-CoV2 infection
Laufzeit: 26.05.2022 bis 25.05.2025
SARS-CoV2 is highly infectious and causes the disease COVID-19. 10-20 % of patients infected with SARS-CoV2 develop severe symptoms. In these patients, SARS-CoV2 can trigger a cytokine storm that leads to the life-threatening Cytokine Release Syndrome (CRS). Among the cytokines released, Interleukin-6 (IL-6), a paradigm pro-inflammatory cytokine with deleterious functions, correlates strongly with and predicts the severity of COVID-19. Noteworthy, systemic vascular complications in critically ill COVID-19 patients represent a main risk. The expression of SARS-CoV2 entry factors on vascular cells in virtually all organs suggests that vascular damage could be a consequence of lytic viral infection of vascular cells. However, it is also discussed that impaired vessel function is mediated by loss of function of non-infected vascular cells exposed to systemically elevated levels of IL-6. In addition, SARS-CoV2 may locally affect IL-6 signalling pathways by controlling the expression and release of IL-6 receptor subunits and IL-6 itself. The suspected role of IL-6 in the development of COVID-19 is the basis for several ongoing clinical trials with approved drugs that either inhibit IL-6 function extracellularly or intervene in intracellular IL-6 signal processing. However, the molecular mechanisms and pathophysiological consequences of IL-6 and the causes of vascular damage in COVID-19 are still unknown.
Preliminary results from clinics show that immunosuppressive glucocorticoids (GC) reduce deaths in certain patient groups by for so far unknown reasons. Remarkedly, both extracellular and intracellular IL-6 signalling is influenced by GC and vice versa IL-6 influences GC signalling. To address the increasing concerns about the efficacy of GC treatment for COVID-19 and possible (adverse) effects of GCs on the vascular system, the molecular mechanisms of GC action in SARS-CoV2-infected cells and the crosstalk of GC and IL-6 must be elucidated.
The aim of this project is to gain profound translational knowledge about molecular mechanisms and pathophysiological consequences of IL-6 and GC action in SARS-CoV2-infected cells and non-infected vascular cells. For this purpose, we will use highly defined 2D and 3D in vitro vascular models and single cell techniques to define the consequences of SARS-CoV2 infection in the two integral vessel cell types, endothelial cells and smooth muscle cells. The results obtained will be a prerequisite for understanding SARS-CoV2 infection and targeted development of treatments to cope with COVID-19.
Abgeschlossene Projekte
Crosstalk zwischen IL-6 und Glucocorticoiden
Laufzeit: 01.01.2013 bis 01.01.2018
Glukokortikoide (z.B. Cortisol) sind körpereigene Botenstoffe, die in Stresssituationen ausgeschüttet werden. Synthetische Glukokortikoide (z.B. Dexamethason) werden seit den 1950er Jahren zur Behandlung entzündlicher Krankheiten eingesetzt. Die genauen Mechanismen ihrer Wirkungen und Nebenwirkungen sind jedoch bis heute nicht verstanden. Es ist bekannt, dass Glukokortikoide die IL-6-induzierte Expression von Akut-Phase Proteinen erhöhen. Zusammen mit der Arbeitsgruppe von Prof. Dr. Bode (Düsseldorf) konnten wir zeigen, dass dies unter anderem durch eine verstärkte JAK/STAT Signaltransduktion ausgelöst wird. Die Hyperaktivierung der JAK/STAT Signaltransduktion konnten wir durch eine reduzierte Expression des IL-6-induzierten feed-back Inhibitors SOCS3 erklären. Wir untersuchen die molekularen Ursachen dieses Prozesses, um zu zeigen, auf welcher Ebene der Proteinexpression die SOCS3 Synthese unterdrückt wird. Darüber hinaus studieren wir auch die molekularen Grundlagen des Wechselspiels zwischen glandulären Hormonen (Prostaglandin, Glucagon), sowie pro-inflammatorischen Zytokinen (z.B. Interleukin 1) und IL-6.
InTraSig:Entwicklung einer personalisierten Anti-Entzündungstherapie zur Inhibition des Interleukin-6-Trans-Signalwegs
Laufzeit: 01.09.2014 bis 31.08.2017
Das interdisziplinäre Projekt hat zum Ziel, einen systemischen Blick auf die komplexe Biologie des Zytokins Interleukin-6 (IL-6) zu entwickeln, welches als eines der wichtigsten Entzündungsmediatoren angesehen wird. IL-6 ist derzeit das Zielmolekül mehrerer therapeutischer Strategien zur Behandlung von Autoimmunerkrankungen. Zwei verschiedene Mechanismen der IL-6-Signaltransduktionsinitiation sind bekannt: das klassische Signalling" über membrangebundene IL-6-Rezeptoren (IL-6R) und das Trans-Signalling über eine lösliche (soluble) Form des IL-6R (sIL-6R). Die bestehenden therapeutischen Ansätze blockieren beide IL-6-Wege. Unsere Kooperationspartner (Prof. Rose-John CAU Kiel und Prof. Scheller HHU Düsseldorf) haben entdeckt, dass das IL-6-Trans-Signalling für die pro-entzündlichen Aktivitäten von IL-6 verantwortlich ist, während das klassische Signalling für die Abwehr von Infektionen und für regenerative Prozessen benötigt wird. Es wurde daher ein Designerprotein (sgp130Fc), welches spezifisch das IL-6-
Trans-Signalling blockiert, ohne das klassische Signalling zu beeinflussen, entwickelt. Die klinische Erprobung einer optimierten sgp130Fc-Variante hat im Juni 2013 begonnen. Das Projekt InTraSig wird die Basis für das Design personalisierter, anti-entzündlicher Interventionsstrategien mittels sgp130Fc-Proteinen liefern. Hierzu werden Faktoren und Reaktionen identifiziert, die unter physiologischen und pathophysiologischen Bedingungen kritisch für die spezifische Dynamik des IL-6-induzierten klassischen Signallings und des Trans-Signallings sind. Die Entschlüsselung der zugrundeliegenden molekularen Mechanismen bedarf neuer experimenteller Ansätze und Modellierungswerkzeuge, sowie der Kombination von biologischen Experimenten, mathematischer Modellierung und modellbasierter Analyse durch den Lehrstuhl für Systemtheorie und Regelungstechnik der OvGU Magdeburg (Prof. Findeisen). Kritische Faktoren und Reaktionen werden als potentielle Biomarker experimentell verifiziert und dienen schließlich als Grundlage für das Design individualisierter therapeutischer Ansätze durch den industriellen Projektpartner CONARIS Research Institute AG.
Kontrolle der entzündlichen Zytokinantwort durch Stress
Laufzeit: 01.09.2014 bis 31.08.2017
Im Fokus dieses Projektes steht ein neues biologisches Konzept, welches der zellulären Stressantwort eine wichtige Rolle in der Regulation der Expression entzündungsrelevanter Zytokine zuspricht. In diesem Rahmen möchten wir erforschen, wie Stress die Expression des inflammatorischen Zytokins TNF-a und des vielseitigen Signaltransduktionsinhibitors SOCS3 reguliert. Gemeinsam wollen wir weiterhin untersuchen, wie diese Regulation durch Interleukin-6, den Hauptmediator der Akut-Phase Reaktion, und durch immunsuppressive Glukokortikoide beeinflusst wird. Diese Arbeit basiert auf unserer Entdeckung, dass die Gene entzündlicher Zytokine oft hoch wirksame intragene RNA-Aktivatoren der Proteinkinase R (PKR) enthalten. Aktivierte PKR gehört zu den Kinasen, die den eukaryontischen Initationsfaktors eIF2a phosphorylieren und somit die Translation hemmen. Dieser Vorgang ist essentiell für die Etablierung einer vollständigen zellulären Stressantwort. So inhibiert zum Beispiel die IFN-g mRNA ihre eigene Translation, in dem sie durch eine 5-proximale RNA Struktur eine lokale Aktivierung der PKR bewirkt. Desweiteren konnten wir zeigen, dass für ein effizientes Speißen der TNF-a mRNA ein kurzes Element in der 3-UTR der TNF-a mRNA benötigt wird, welches ebenfalls PKR aktiviert. Die Aktivierung von PKR führt zur Phosphorylierung von eIF2a, welche essentiell für das Spleißen der TNF-a mRNA ist. Dieser Mechanismus stellt eine bisher nicht beschriebene positive Regulation des mRNA Spleißens durch eIF2a dar. Auch die Expression von SOCS3 wird im Rahmen der zelluläre Stressreaktion durch PKR und eIF2a-Phosphorylierung reguliert. Die Aktivierung von PKR induziert unter Bedingungen, welche die eIF2a-Phosphorylierung induzieren, die Expression einer N-terminal verkürzten SOCS3-Isoform, delta N-SOCS3, die langlebiger als SOCS3 ist und somit als potenterer Inhibitor wirkt. Kürzlich konnten wir zeigen, dass Glukokortikoide die IL-6-abhängige Geninduktion durch die Inhibierung der SOCS3 Expression verstärken, ohne jedoch die SOCS3 Proteinstabilität oder die Menge bzw. die Stabilität der SOCS3-mRNA zu beeinflussen. Diese Beobachtungen deuten auf eine Repression der SOCS3 Translation hin. Wir fragen uns daher, ob die für die Synthese des stabileren delta N-SOCS3 notwendige PKR-Aktivierung durch intragene SOCS3 RNA-Aktivatoren erreicht wird und ob Glukokortikoide über eine Regulation der PKR-Aktivität und eIF-2a-Phosphorylierung Einfluss auf die SOCS3 Expression nehmen. Die Aktivierung von PKR und die Phosphorylierung von eIF2a kontrollieren somit die Expression von SOCS3 und TNF-a. Sowohl die Expression von SOCS3 als auch die Expression von TNF-a-werden durch IL-6 und Glukokortikoide reguliert. Diese Beobachtungen bilden die Grundlage dieses Forschungsvorhabens. Die Ergebnisse dieser gemeinsamen Studien zu den biologischen Grundlagen der zellulären Stressantwort werden für das Verständnis entzündlicher Prozesse von Bedeutung sein.
Funktionsdefinition der Proteintyrosinphosphatase SHP2
Laufzeit: 01.08.2012 bis 01.08.2017
Die Proteintyrosinphosphatase SHP2 hat ambivalente Funktionen in der IL-6-induzierten Signaltransduktion. Zum einen inhibiert sie den JAK/STAT Signalweg, zum anderen fördert sie die Aktivierung der MAPK Kaskade. Beide Funktionen und ihr Zusammenspiel sind bis heute noch nicht vollständig verstanden. In einem interdisziplinären Projekt mit der Arbeitsgruppe von Prof. Dr. Mönnigmann (Bochum) konnten wir zeigen, dass SHP2 in der frühen IL‑6-induzierten Signaltransduktion nicht als Negativregulator wirkt. Im Gegensatz dazu postulieren wir eine bisher nicht bekannte Funktion von SHP2 als Repressor einer Zytokin-unabhängiger Aktivität des JAK/STAT Signalweges, die z.B. in vielen proliferativen Krankheiten detektiert wird. Mutationen in SHP2 werden in Patienten mit verschiedenen Krankheitsbildern (Noonan-, LEOPARD-Syndrom und Leukämien) gefunden. Wir konnten zeigen, dass diese Mutationen in SHP2 die Interaktion von SHP2 mit anderen Molekülen verändert. Wir möchten verstehen, welchen Einfluss diese Mutationen und die daraus resultierenden veränderten Bindungseigenschaften auf die IL-6-induzierte Signaltransduktion haben. In weiteren Teilprojekten untersuchen wir, wie SHP2 zur IL-6-induzierten Aktivierung der MAPK Kaskade beiträgt und wie SHP2 und der feed-back inhibitor SOCS3 das Gleichgewicht zwischen JAK/STAT Signalweg und MAPK Kaskade steuern.
Regulierung der SOCS3-Expression durch Glukokortikoide - ein neuer Mechanismus zur Induktion dendritischer Toleranz?
Laufzeit: 01.01.2014 bis 02.04.2014
Glucocorticoide (GC) sind weit verbreitete entzündungshemmende Medikamente. Ihr genauer Wirkmechanismus ist jedoch noch nicht ausreichend geklärt. Wir haben vor kurzem gezeigt, dass ein Grund für die GC-Wirkung eine erhöhte IL-6-induzierte JAK/STAT-Signalgebung in der Leber ist. Der Anstieg der STAT3-Aktivierung wird durch eine verringerte Expression des IL-6-induzierten Feedback-Inhibitors SOCS3 verursacht. SOCS3 ist bekanntlich ein wichtiger Vermittler von Entzündungen. Die genaue Funktion von SOCS3 wird jedoch noch untersucht. In vielen Zelltypen führt eine verlängerte Aktivierung von STAT3, z. B. durch eine verringerte SOCS3-Expression, zu schweren Erkrankungen, und eine Überexpression von SOCS3 verringert das Fortschreiten von Arthritis bei Mäusen. GC beeinflussen auch Antigen-präsentierende Zellen wie dendritische Zellen, wo sie die Differenzierung eines tolerogenen Phänotyps fördern. Diese tolerogenen dendritischen Zellen haben ein geringes kostimulatorisches Potenzial, sezernieren hohe Mengen an entzündungshemmenden Zytokinen und weisen ein vermindertes Potenzial auf, die Differenzierung von entzündlichen T-Zellen zu induzieren. Der molekulare Mechanismus der GC-veränderten dendritischen Zellreifung wird jedoch noch untersucht. Interessanterweise zeigte die Gruppe von Prof. Yoshimura, dass sich auch SOCS3-defiziente dendritische Zellen zu tolerogenen DC entwickeln. Darüber hinaus haben andere Gruppen gezeigt, dass die zeitlich abgestimmte Expression von SOCS3 für die Entwicklung reifer immunogener dendritischer Zellen wichtig ist und dass SOCS3 einer der Hauptregulatoren ist, die den entzündlichen Phänotyp dendritischer Zellen bestimmen. Auf der Grundlage dieser Studien postulieren wir, dass GC die Entwicklung tolerogener DC beeinflusst, indem es die Expression von SOCS3 in DC reduziert. Dies ist ein bisher unbekannter molekularer Mechanismus, der zu den entzündungshemmenden Eigenschaften von GC beitragen könnte.
Dieser Text wurde mit DeepL übersetzt