Projects
Current projects
Programm Forschungsgroßgeräte - Zellsorter INST 272/284-1 FUGG
Duration: 16.07.2020 bis 15.07.2030
Verschiedene Zelltypen in einem Organismus und sogar individuelle Zellen mit identischen Funktionen innerhalb eines Organs unterscheiden sich sowohl qualitativ als auch quantitativ in Bezug auf epigenetische Modifikationen, Transkriptom, Proteom und posttranslationale Modifikationen. Diese Heterogenität tritt auch in klonalen Zelllinien auf. Bis heute ist unser Wissen über die Vor- und Nachteile der zellulären Heterogenität für die Robustheit und Plastizität biologischer Systeme noch begrenzt. Ein besseres Verständnis der Gründe und Folgen der zellulären Heterogenität wird uns helfen, die potenziell pathologischen Konsequenzen einer verstärkten oder reduzierten Heterogenität zu verstehen. Neben der inhärenten Heterogenität eukaryontischer Zellen sind genetische Manipulationen dieser Zellen, mit Methoden wie z.B. CRISPR/Cas9, eine weitere Quelle für Heterogenität zwischen Zellen. Diese artifizielle Heterogenität kann das Ergebnis von Experimenten beeinflussen und somit den Wissensgewinn reduzieren. Um dies zu vermeiden, ist die Isolation von definierten Zelltypen, individuellen Zellen oder sogar einzelnen Zellkernen aus primären Geweben, in vitro Organmodellen oder (genetisch modifizierten) Zelllinien in der molekularbiologischen und biomedizinischen Forschung unvermeidbar. Diese ermöglich 1.) die Konsequenzen und Gründe der inhärenten Heterogenität in physiologischen und pathophysiologischen Prozessen zu verstehen und 2) experimentelle Artefakte durch klonale Effekte zu reduzieren. Zellsorter ermöglichen, basierend auf fluoreszierenden Markern, Zellpopulationen und einzelne Zellen zu isolieren. Die so isolierten Zellen können entweder weiter kultiviert, oder direkt analysiert werden.
Signaling proteins as intracellular targets for peptides: a new, targeted, molecular-therapeutic approach
Duration: 01.04.2024 bis 31.12.2027
The homeostasis of an organism is regulated by soluble mediators such as hormones and cytokines. These messengers activate various intracellular signalling pathways that interact in complex networks. The temporal and spatial orchestration of these signalling pathways is strictly controlled. An unbalanced activation of the signalling pathways leads to severe immunological, inflammatory or proliferative diseases. Multi-site docking proteins such as Gab1 play a particularly important role in the interconnection of these signalling pathways. Misregulation of Gab1 has been described in breast and colon cancer and leukaemia, among others. Multi-site docking proteins do not have an enzymatic function but mediate the networking of various signalling pathways via protein-protein interactions between various other signalling molecules. "Multi-site docking proteins thus integrate different signalling pathways - almost like a molecular computer. This makes them promising targets in the development of new therapeutic approaches. The great importance of Gab1 in physiologically and patho-physiologically important cellular processes encourages us to focus on Gab1 as a therapeutic target.
The currently prevailing therapeutic strategies are based on the blockade of specific extracellular signaling components (e.g. receptors, mediators) with biologicals, such as therapeutic antibodies, or on the inhibition of intracellular signalling proteins (e.g. kinases) with cell-permeable pharmacological inhibitors. However, the use of such inhibitors is limited by non-specific "off-targets" and the primary effect against signalling proteins with enzymatic function. However, intracellular Gab1, which is essential for signal integration, cannot be inhibited by inhibitors because it has no enzymatic function. We therefore postulate the use of therapeutic peptides for the targeted control of Gab1 function. Peptides are short amino acid chains of small size. The high binding specificity of peptides and the possibility of interfering with non-enzymatic processes such as protein-protein interactions open up the possibility of specifically controlling the function of Gab1. Until now, the use of therapeutic peptides has been difficult due to their low cell permeability and short half-life and is primarily limited to extracellular applications.
Intravascular crosstalk of interleukin-6 and therapeutic glucocorticoids in SARS-CoV2 infection
Duration: 26.05.2022 bis 25.05.2025
SARS-CoV2 is highly infectious and causes the disease COVID-19. 10-20 % of patients infected with SARS-CoV2 develop severe symptoms. In these patients, SARS-CoV2 can trigger a cytokine storm that leads to the life-threatening Cytokine Release Syndrome (CRS). Among the cytokines released, Interleukin-6 (IL-6), a paradigm pro-inflammatory cytokine with deleterious functions, correlates strongly with and predicts the severity of COVID-19. Noteworthy, systemic vascular complications in critically ill COVID-19 patients represent a main risk. The expression of SARS-CoV2 entry factors on vascular cells in virtually all organs suggests that vascular damage could be a consequence of lytic viral infection of vascular cells. However, it is also discussed that impaired vessel function is mediated by loss of function of non-infected vascular cells exposed to systemically elevated levels of IL-6. In addition, SARS-CoV2 may locally affect IL-6 signalling pathways by controlling the expression and release of IL-6 receptor subunits and IL-6 itself. The suspected role of IL-6 in the development of COVID-19 is the basis for several ongoing clinical trials with approved drugs that either inhibit IL-6 function extracellularly or intervene in intracellular IL-6 signal processing. However, the molecular mechanisms and pathophysiological consequences of IL-6 and the causes of vascular damage in COVID-19 are still unknown.
Preliminary results from clinics show that immunosuppressive glucocorticoids (GC) reduce deaths in certain patient groups by for so far unknown reasons. Remarkedly, both extracellular and intracellular IL-6 signalling is influenced by GC and vice versa IL-6 influences GC signalling. To address the increasing concerns about the efficacy of GC treatment for COVID-19 and possible (adverse) effects of GCs on the vascular system, the molecular mechanisms of GC action in SARS-CoV2-infected cells and the crosstalk of GC and IL-6 must be elucidated.
The aim of this project is to gain profound translational knowledge about molecular mechanisms and pathophysiological consequences of IL-6 and GC action in SARS-CoV2-infected cells and non-infected vascular cells. For this purpose, we will use highly defined 2D and 3D in vitro vascular models and single cell techniques to define the consequences of SARS-CoV2 infection in the two integral vessel cell types, endothelial cells and smooth muscle cells. The results obtained will be a prerequisite for understanding SARS-CoV2 infection and targeted development of treatments to cope with COVID-19.
Completed projects
Kontrolle der entzündlichen Zytokinantwort durch Stress
Duration: 01.09.2014 bis 30.09.2018
Im Fokus dieses Projektes steht ein neues biologisches Konzept, welches der zellulären Stressantwort eine wichtige Rolle in der Regulation der Expression entzündungsrelevanter Zytokine zuspricht. In diesem Rahmen möchten wir erforschen, wie Stress die Expression des inflammatorischen Zytokins TNF-a und des vielseitigen Signaltransduktionsinhibitors SOCS3 reguliert. Gemeinsam wollen wir weiterhin untersuchen, wie diese Regulation durch Interleukin-6, den Hauptmediator der Akut-Phase Reaktion, und durch immunsuppressive Glukokortikoide beeinflusst wird. Diese Arbeit basiert auf unserer Entdeckung, dass die Gene entzündlicher Zytokine oft hoch wirksame intragene RNA-Aktivatoren der Proteinkinase R (PKR) enthalten. Aktivierte PKR gehört zu den Kinasen, die den eukaryontischen Initationsfaktors eIF2a phosphorylieren und somit die Translation hemmen. Dieser Vorgang ist essentiell für die Etablierung einer vollständigen zellulären Stressantwort. So inhibiert zum Beispiel die IFN-g mRNA ihre eigene Translation, in dem sie durch eine 5-proximale RNA Struktur eine lokale Aktivierung der PKR bewirkt. Desweiteren konnten wir zeigen, dass für ein effizientes Speißen der TNF-a mRNA ein kurzes Element in der 3-UTR der TNF-a mRNA benötigt wird, welches ebenfalls PKR aktiviert. Die Aktivierung von PKR führt zur Phosphorylierung von eIF2a, welche essentiell für das Spleißen der TNF-a mRNA ist. Dieser Mechanismus stellt eine bisher nicht beschriebene positive Regulation des mRNA Spleißens durch eIF2a dar. Auch die Expression von SOCS3 wird im Rahmen der zelluläre Stressreaktion durch PKR und eIF2a-Phosphorylierung reguliert. Die Aktivierung von PKR induziert unter Bedingungen, welche die eIF2a-Phosphorylierung induzieren, die Expression einer N-terminal verkürzten SOCS3-Isoform, delta N-SOCS3, die langlebiger als SOCS3 ist und somit als potenterer Inhibitor wirkt. Kürzlich konnten wir zeigen, dass Glukokortikoide die IL-6-abhängige Geninduktion durch die Inhibierung der SOCS3 Expression verstärken, ohne jedoch die SOCS3 Proteinstabilität oder die Menge bzw. die Stabilität der SOCS3-mRNA zu beeinflussen. Diese Beobachtungen deuten auf eine Repression der SOCS3 Translation hin. Wir fragen uns daher, ob die für die Synthese des stabileren delta N-SOCS3 notwendige PKR-Aktivierung durch intragene SOCS3 RNA-Aktivatoren erreicht wird und ob Glukokortikoide über eine Regulation der PKR-Aktivität und eIF-2a-Phosphorylierung Einfluss auf die SOCS3 Expression nehmen. Die Aktivierung von PKR und die Phosphorylierung von eIF2a kontrollieren somit die Expression von SOCS3 und TNF-a. Sowohl die Expression von SOCS3 als auch die Expression von TNF-a-werden durch IL-6 und Glukokortikoide reguliert. Diese Beobachtungen bilden die Grundlage dieses Forschungsvorhabens. Die Ergebnisse dieser gemeinsamen Studien zu den biologischen Grundlagen der zellulären Stressantwort werden für das Verständnis entzündlicher Prozesse von Bedeutung sein.
InTraSig:Entwicklung einer personalisierten Anti-Entzündungstherapie zur Inhibition des Interleukin-6-Trans-Signalwegs
Duration: 01.09.2014 bis 31.12.2017
Das interdisziplinäre Projekt hat zum Ziel, einen systemischen Blick auf die komplexe Biologie des Zytokins Interleukin-6 (IL-6) zu entwickeln, welches als eines der wichtigsten Entzündungsmediatoren angesehen wird. IL-6 ist derzeit das Zielmolekül mehrerer therapeutischer Strategien zur Behandlung von Autoimmunerkrankungen. Zwei verschiedene Mechanismen der IL-6-Signaltransduktionsinitiation sind bekannt: das "klassische Signalling" über membrangebundene IL-6-Rezeptoren (IL-6R) und das "Trans-Signalling" über eine lösliche (soluble) Form des IL-6R (sIL-6R). Die bestehenden therapeutischen Ansätze blockieren beide IL-6-Wege. Unsere Kooperationspartner (Prof. Rose-John CAU Kiel und Prof. Scheller HHU Düsseldorf) haben entdeckt, dass das IL-6-Trans-Signalling für die pro-entzündlichen Aktivitäten von IL-6 verantwortlich ist, während das klassische Signalling für die Abwehr von Infektionen und für regenerative Prozessen benötigt wird. Es wurde daher ein Designerprotein (sgp130Fc), welches spezifisch das IL-6-Trans-Signalling blockiert, ohne das klassische Signalling zu beeinflussen, entwickelt. Die klinische Erprobung einer optimierten sgp130Fc-Variante hat im Juni 2013 begonnen. Das Projekt InTraSig wird die Basis für das Design personalisierter, anti-entzündlicher Interventionsstrategien mittels sgp130Fc-Proteinen liefern. Hierzu werden Faktoren und Reaktionen identifiziert, die unter physiologischen und pathophysiologischen Bedingungen kritisch für die spezifische Dynamik des IL-6-induzierten klassischen Signallings und des Trans-Signallings sind. Die Entschlüsselung der zugrundeliegenden molekularen Mechanismen bedarf neuer experimenteller Ansätze und Modellierungswerkzeuge, sowie der Kombination von biologischen Experimenten, mathematischer Modellierung und modellbasierter Analyse durch den Lehrstuhl für Systemtheorie und Regelungstechnik der OvGU Magdeburg (Prof. Findeisen). Kritische Faktoren und Reaktionen werden als potentielle Biomarker experimentell verifiziert und dienen schließlich als Grundlage für das Design individualisierter therapeutischer Ansätze durch den industriellen Projektpartner CONARIS Research Institute AG.
Understanding misbalanced signalling by JAK2-V617F in myeloproliferative neoplasms fusing qualitative and quantitative modelling
Duration: 01.01.2013 bis 31.07.2016
The project concentrates on understanding the role of active mutants of the Janus kinase 2 which has been frequently found in patients suffering from different forms of myeloproliferative neoplasms (MPN). Currently only limited knowledge about the underlying molecular mechanismis, as well as the resulting misregulations associated with JAK2-V617F expression exist. Finally, it is not solved how a single mutation can lead to different phenotypes of MPNs. Thus, mutant JAK2 and its specific signalling pathway constitute attractive therapeutic targets for MPN patients. We hypothesise that proximal signalling nodes are crucially involved in the onset of misbalanced signalling. However, pure biological deduction and biological experiments do not allow understanding the interplay of the involved factors and signalling paths involved due to the complexity present and the mixture of qualitative and quantitative biological and experimental information. The aims of this project are therefore to use a combination of qualitative and quantitative systems biology modelling and analyses approaches together with biological experiments.
Dynamik und Mechanismen der Interleukin-6-Rezeptoraktivierung
Duration: 01.01.2013 bis 31.12.2013
IL-6 signals through two different signalling modes: classic signalling via a membrane bound IL-6 receptor (IL-6R) and trans-signalling via a soluble IL-6R. The interdisciplinary project aims to attain a systems view on interleukin (IL)-6 receptor activation.
Signal Transduktion von JAK2-V617F
Duration: 01.01.2012 bis 31.12.2012
The identification of a constitutively active mutant of JAK2, namely JAK2-V617F in the year 2005 was a milestone in the understanding of Philadelphia-chromosome negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine independent growth. Since we observed constitutive phosphorylation of Gab1 in the presence of JAK2-V617F but not in the presence of JAK2 we hypothesise that adapter proteins of the Gab family may facilitate JAK2-V617F-mediated MAPK, PI3K and PLC activation. Furthermore, we hypothesize, that Gab adapter proteins play a key role in mediating cytokine hypersensitivity by integrating stimulatory and inhibitory signalling events in dependence of the level of JAK2-V617F expression. Gaining a dynamic view on misregulated signalling in response to JAK2-V617F expression is crucial for understanding JAK2-V617F-dependent-diseases. In this project study the molecular interplay of Gab1 and JAK2-V617F.
Adapter proteins as a central regulator of the dynamics of cytokine signaling
Duration: 01.02.2010 bis 31.12.2011
Adapter proteins involved in signal transduction fulfil their cellular functions by bringing signalling molecules together and by targeting these signalling components to defined compartments within the cell. Furthermore, adapter proteins represent a molecular platform from which different signalling pathways are initiated. Gab1 is an adapter which recruits the p85 subunit of the phosphatidylinositol 3-kinase, the adapter Grb2, the adapter and phosphatase SHP2 and the GTPase-activating protein Ras-GAP. By this, Gab1 contributes to the activation of the PI3K cascade and the MAPK cascade by growth factors and cytokines. A contribution of Gab1 to the signal transduction of EGF, PDGF, HGF and IL-6 has been demonstrated. The recruitment of Gab1 to phosphatidylinositol-3,4,5-tris-phosphate within the plasma membrane by its pleckstrin homology domain is regarded as a major crucial step for the regulation of Gab1. We identified a novel and more complex mechanism for Gab1 translocation induced by IL-6, which involves and depends on the activation of ERK. This mechanism represents a new mode of regulation for the function of PH domains. Although the proposed mechanism suggests a positive feedback regulation, a detailed analysis of the influence of Gab1 on the kinetics and mutual regulation of the Gab1-dependent but STAT-independent signalling pathways initiated by IL-6 remains to be determined. Qualitative and quantitative differences are expected for the individual cytokines and growth factors utilizing Gab1 for signal transduction. The long term aim of the our activities at the newly established chair for system biology at the OvGU is to gain detailed knowledge on the regulatory function of adapter proteins in cytokine signalling and its impact on the balance and dynamics of signal transduction and consequently on gene expression, cell proliferation and other biological responses. Here, we will focus on the regulatory circuits of Gab1-regulated signal transduction pathway and their impact for the dynamics of signal transduction.
Balance of MAPK-activation and the initiation of the JAK/STAT pathway in interleukin-6 signal transduction
Duration: 23.07.2010 bis 31.12.2011
Interleukin-6 (IL-6) signals through a receptor complex which contains the signal transducing subunit gp130 and initiates the JAK/STAT pathway as well as the MAPK cascade. The tyrosine motif 759 within the cytoplasmic part of gp130 exerts a dual function to control both pathways reversely. In the frame of this project we start off to transform our rather qualitative molecular view of this dual function to a more detailed quantitative view on the balance of both pathways. In parallel to our experiments in cell culture the model-based interpretation of our data will also shift from a qualitative to a quantitative view by using the methods developed by partners from the systems theory
Funktionsdefinition der Protein-Tyrosinphosphatase SHP2 in der Interleukin-6 Signaltransduktion
Duration: 01.10.2007 bis 30.09.2011
Die Signaltransduktion der Zytokine (Interleukine, Interferone, Wachtumsfaktoren und Chemokine) wird auf verschiedenen Ebenen negativ reguliert. Neben den Zytokin-induzierten SOCS feedback-Inhibitoren spielen hierbei Protein-Tyrosinphosphatasen, die am Rezeptorkomplex oder im Zellkern wirken, eine entscheidende Rolle. Wir konnten bereits die Inhibition der IL-6 Signaltransduktion durch die Rekrutierung von SOCS3 und SHP2 an den Rezeptorkomplex nachweisen. Offen geblieben ist aber die Frage nach der genauen Funktion von SHP2. Mit diesem Forschungsvorhaben sollen zwei alternative Funktionen von SHP2 geprüft werden: 1) SHP2 wirkt nach Aktivierung der Signaltransduktion als feedback-Inhibitor. Während diese Vorstellung zurzeit weitgehend akzeptiert ist, gibt es erste experimentelle Hinweise, die sie in Frage stellen. 2) SHP2 fungiert entsprechend dem von uns neu formulierten Modell als basaler Repressor der Signaltransduktion, der nach Zytokinstimulation inaktiviert wird und erst so die Signaltransduktion zulässt (De-Repression). Mittels molekularbiologischer, biochemischer und systembiologischer Ansätze soll entschieden werden, welche dieser beiden alternativen Funktionen SHP2 tatsächlich erfüllt. Die zu erwartenden Ergebnisse werden auch über das IL-6-System hinaus für das Verständnis der Signaltransduktion weiterer Wachstumsfaktoren und Interleukine, an denen Protein-Tyrosinphosphatasen beteiligt sind, von Bedeutung sein.
Cross-talk von NF-kB, Glucokorticoiden und STAT3 während der Akut-Phase Reaktion
Duration: 01.07.2008 bis 30.06.2011
Unter der Akutphase Reaktion werden die Prozesse zusammengefasst, mit welchen der betroffene Organismus auf pathogene Noxen reagiert. Ein wesentliches Charakteristikum der Akutphase Reaktion ist der Anstieg der Blutkonzentration von einer Gruppe von Proteinen, die auch als Akutphase Proteine bezeichnet werden. Das Projekt befasst sich mit der Aufklärung der Signalmechanismen, über die Botenstoffe wie Interleukin-6, Interleukin-1 und Glucokortikoide die Synthese dieser Proteine im Hepatozyten kontrollieren.
IL-6-vermittelte, STAT-unabhängige Signalwege
Duration: 01.07.2008 bis 31.01.2011
Im TP B2 soll der neu entdeckte Aktivierungsmechanismus des Adapterproteins Gab1, welches für die Aktivierung der STAT-unabhängigen Signalwege, wie der PI3K- und MAPK-Kaskade, eine zentrale Rolle einnimmt, analysiert werden. Darüber hinaus sollen krankheitsrelevante Mutanten der Protein-Tyrosinphosphatase SHP2, die ebenfalls an der Induktion der STAT-unabhängigen Signaltransduktion beteiligt ist, biochemisch untersucht werden. Basierend auf unseren Ergebnissen zur Inhibition der MAPK-Kaskade durch Prostaglandin, soll nun auch die Beeinflussung der IL-6-Signaltransduktion durch Glukagon analysiert werden.
Untersuchungen zum cross-talk zwischen IL-6-Typ-Zytokinen und dem Wachstumsfaktor PDGF: die Rolle der SOCS3-Phosphorylierung
Duration: 01.08.2005 bis 30.04.2009
Die Erforschung der molekularen Mechanismen, die zur Entartung und gesteigerten Proliferation von Zellen führen und so an der Oncogenese beteiligt sind, ist von essenzieller Bedeutung für die Entwicklung neuer Krebstherapien. Eine gezielte Intervention kann nur erfolgen, wenn die beteiligten Signalwege identifiziert und ihre Dysregulation verstanden ist. Sowohl für IL-6-Typ Zytokine als auch für Wachstumsfaktoren wie EGF oder PDGF sowie für Src-Kinasen wird eine Rolle bei der Pathogenese verschiedener Krebsarten (Multiples Myelom, Brustkarzinom, Prostatakarzinom etc.) diskutiert. Wir haben einen cross-talk Mechanismus zwischen IL‑6 und EGF bzw. PDGF gefunden, der zur Phosphorylierung des IL-6 induzierten feedback-Inhibitors SOCS3 führt. Im vorliegenden Antrag sollen nun die Auswirkungen dieses cross-talks genauer untersucht werden. Besonderes Augenmerk soll hierbei der Rolle des phosphorylierten SOCS3 zukommen. Wir wollen untersuchen, wie sich die Phosphorylierung von SOCS3 auf dessen Funktion auswirkt. Der cross-talk soll sowohl in Krebszellen, die eine konstitutive Aktivierung der beteiligten Kinasen (EGFR, PDGFR oder Src-Kinasen) zeigen, als auch in Zellen, in denen sie normal aktivierbar sind, untersucht werden. Eine wichtige Frage ist, ob konstitutiv aktive Kinasen durch die Phosphorylierung des Negativregulators SOCS3 die Signaltransduktion von Zytokinen wie IL-6 verstärken, verlängern oder auch das Gleichgewicht der beteiligten STAT- und MAPK-Signalwege ungünstig verändern können. Solche Effekte könnten zum ungünstigen Verlauf einer Krebserkrankung beitragen.
IL-6-vermittelte, STAT-unabhängige Signalwege
Duration: 01.07.2005 bis 30.06.2008
Im TP B2 sollen IL-6-induzierte, STAT-unabhängige Signalwege analysiert werden. Es werden die molekularen Mechanismen, die zur IL-6-induzierten Aktivierung der MAPK- und PI3K-Kaskade führen, untersucht. Besonderes Augenmerk finden dabei membrannahe Adapterproteine wie Gab1, SIRP und PAG, deren Funktionen bei der IL-6-Signaltransduktion noch nicht verstanden sind. Der Integrin/IL-6 cross-talk soll in Zukunft auch molekular untersucht werden. Die Studien bisher Gegenstand des TP B7 dazu sollen wegen der thematischen Nähe nun im Rahmen des TP B2 weitergeführt werden.
Untersuchungen zur dualen Funktion von NF-kB für die Regulation STAT3-abhängiger Gene
Duration: 01.07.2005 bis 30.06.2008
Die Expression der Akut-Phase Proteine stellt einen wesentlichen Schritt im Entzündungsgeschehen dar. Die IL-6-induzierte Synthese von Typ II Akut-Phase Proteinen wird durch IL-1b über einen bisher weitgehend ungeklärten Mechanismus gehemmt. Unsere Untersuchungen belegen, dass die Aktivierung der NF-kB Signalkaskade von wesentlicher Bedeutung für die inhibitorische Wirkung von IL-1b ist. Die Interaktion der NF-kB Kaskade mit dem JAK/STAT-Signalweg steht daher im Zentrum der im Teilprojekt B4 geplanten Untersuchungen.
Negative Regulation der Interleukin-6-Signaltransduktion
Duration: 01.07.2002 bis 30.06.2005
Interleukin-6-Typ Zytokine vermitteln ihre biologischen Funktionen über Rezeptorkomplexe, die alle den Signaltransduktor gp130 als gemeinsame Untereinheit enthalten. Die Repression der Signaltransduktion dieser Zytokine wird erst seit kurzem analysiert. In der vergangenen Förderperiode untersuchten wir die Bedeutung verschiedener Halblebenszeiten der Signalmoleküle, der Tyrosin-Phosphatase SHP2 sowie der feedback-Inhibitoren SOCS1 und SOCS3 für die Abschaltung der IL-6-vermittelten Signaltransduktion. Darüber hinaus fanden wir, dass über das Tyrosin 759 im gp130 die STAT-Aktivierung, aber auch die Zytokin-vermittelte Geninduktion negativ beeinflusst wird. Für die Funktion des Janus-Kinase-Inhibitors SOCS3 - nicht jedoch für SOCS1 - ist das Tyrosin 759 im gp130 essentiell. Hierzu passt unsere Beobachtung, dass neben der Proteintyrosin-Phosphatase SHP2 auch SOCS3 spezifisch an das Phosphotyrosin 759 von gp130 bindet. Der genaue Y759-abhängige Inhibitionsmechanismus ist noch unbekannt. Die duale Funktion des Tyrosin 759 erschwert die Analyse seiner Bedeutung für die Signalinhibition. Es gilt zu klären, ob SHP2 an der Signalrepression beteiligt ist. Es ist auch denkbar, dass SOCS3 seine Funktion über SHP2 vermittelt. Um weitere Einblicke in diese Regulationsmechanismen zu erhalten, ist geplant, gp130-basierende Rezeptoren zu entwickeln, die selektiv entweder eine SOCS3- oder eine SHP2-Rekrutierung ermöglichen. Die Analyse der Signaltransduktion über diese künstlichen SOCS3- bzw. SHP2-freien Rezeptorkomplexe soll Auskunft über die Bedeutung beider Proteine bei der Y759-vermittelten Signalinhibition und über deren Mechanismus liefern. Darüber hinaus möchten wir die Signalabschaltung in Zellen untersuchen, die keine funktionelle SHP2 exprimieren,. Schließlich planen wir zu analysieren, ob das SHP2-Substrat SHPS/SIRP an der Hemmung des Jak/STAT-Signalwegs beteiligt ist. Unsere Untersuchungen möchten wir nicht nur auf die Signaltransduktion von IL-6 beschränken, sondern auch auf die von LIF und OSM ausdehnen, um den gp130-vermittelten negativen Einfluss auf die Signaltransduktion eines gp130/LIF-R- bzw. gp130/OSM-R-Komplexes zu verstehen und eventuelle Unterschiede zwischen gp130/gp130- und gp130/LIF-R- bzw. gp130/OSM-R-vermittelten Signalwegen aufzudecken. Wir hoffen, durch unsere Arbeiten potentielle Eingriffsmöglichkeiten in die IL-6-Typ-Zytokin-Signaltransduktion aufzeigen zu können. Gesucht werden Möglichkeiten, spezifisch einzelne inhibitorische Signalwege und als Folge daraus bestimmte Zytokin-Antworten zu modulieren.
Signaltransduktion der Interleukin-6-Typ-Zytokin-vermittelten Migration von T-Zellen
Duration: 01.07.2002 bis 30.06.2005
Interleukin‑6 (IL‑6) ist ein Zytokin mit pleiotropem Wirkungsspektrum. Die Funktion von IL‑6 als chemotaktischer Faktor für T‑Zellen ist zwar seit längerem bekannt, molekular aber noch nicht untersucht worden. IL‑6 aktiviert den Jak/STAT-Signalweg, aber auch die Ras/Raf/MAPK-Kaskade. Es soll geklärt werden, über welchen Signalweg IL‑6 die T‑Zell-Wanderung initiiert. Dazu sollen mutierte IL‑6-Rezeptorkomponenten, die nur die Aktivierung des Jak/STAT-Signalweges oder nur der Ras/Raf/MAPK-Kaskade erlauben, stabil in T-Zellen exprimiert und deren Migrationsverhalten nach Rezeptoraktivierung analysiert werden. Diese Befunde sollen durch Expression dominant negativ wirkender STAT-Faktoren (STAT3‑Y705F) bzw. Komponenten der MAPK-Kaskade (dnErk, dnp38, dnJNK1, dnMKK6, dnRAF) erhärtet werden. Alternativ werden mit Hilfe niedermolekularer Inhibitoren die Signalwege inhibiert. IL‑6 und seine verwandten Zytokine, die sogenannten IL‑6‑Typ-Zytokine (IL‑6, IL-11, LIF, OSM, CLC, CT1, CNTF), signalisieren alle über Rezeptorkomplexe, die den Signaltransduktor gp130 als gemeinsame Untereinheit enthalten und auch zum Teil die gleichen Signalmoleküle aktivieren. Daher besitzen IL‑6‑Typ-Zytokine überlappende, aber auch spezifische biologische Aktivitäten. Wir haben bereits feststellen können, dass OSM wesentlich schlechter als IL‑6 eine T‑Zell-Migration auslöst, obwohl der OSM‑R auf den untersuchten Zellen exprimiert wird. Unterschiede zwischen der IL‑6- und der OSM-Signaltransduktion, die diesen Unterschied in der Migrationsauslösung ausmachen, können Hinweise auf die Verbindung der Zytokin- und der Integrin-Signalwege aufzeigen und sollen daher identifiziert werden. Schließlich soll herausgefunden werden, auf welche Komponenten des Integrin-Signalweges IL‑6 wirkt. Dabei werden wir uns nicht auf die Untersuchung des Aktivierungsstatus einzelner Komponenten des Integrin-Signalweges beschränken, sondern auch versuchen, mit Hilfe der konfokalen Laser-scanning-Mikroskopie eine räumliche und zeitliche Auflösung der bei der Auslösung der Zellmigration aktivierten Signalmoleküle zu erreichen.
Untersuchungen zur dualen Funktion von NF-kB für die Regulation STAT3-abhängiger Gene
Duration: 01.07.2002 bis 30.06.2005
Ein wesentlicher Teil der Entzündungsreaktion ist die Induktion spezifischer Gene. Viele dieser Gene werden unterschiedlich durch pro- und anti-inflammatorische Zytokine reguliert. In diesem Zusammenhang sollen die molekularen Grundlagen des cross-talks von Interleukin-6 und Interleukin-6 analysiert werden. Für die Vermittlung des durch Bindung von IL-6 an seinen Rezeptor ausgelösten intrazellulären Signals ist der Jak/STAT-Signalweg von zentraler Bedeutung. In letzter Zeit wurde zunehmend deutlich, dass der Jak/STAT-Signalweg durch andere Signalwege beeinflusst und so die IL-6-induzierte Genexpression moduliert wird. So konnte am Beispiel des a2-Makroglobulin (a2M)-Promotors gezeigt werden, dass über die NF-kB Bindungsstellen inhibitorisch auf die transkriptionelle Aktivierbarkeit des Promotors Einfluss genommen wird. Interessanterweise fand sich in weiterführenden Promotoranalysen, dass für die Hemmung der IL-6-induzierten Akutphase durch Interleukin-1b die Kompetition von STAT3 mit NF-kB um überlappende Bindungsstellen am Promotor eine wesentliche Rolle spielt. Andererseits ist jedoch die Präsenz einer funktionellen NF-kB-Bindungsstelle für die transkriptionelle Aktivierung des Promotors essentiell. Gegenstand des vorliegenden Antrags ist die weitergehende Aufklärung der Funktion überlappender NF-kB- und STAT3-DNA-Bindungssequenzen in den Promotoren IL‑6-induzierbarer Gene. Hierbei soll insbesondere die duale (inhibitorische und essentielle) Funktion der NF-kB-Bindungsstellen im a2M-Gen-Promotor bei der IL‑6-abhängigen Induktion untersucht werden. Des weiteren soll Hinweisen nachgegangen werden, die annehmen lassen, dass nicht nur das a2M-Gen sondern einige andere Gene auch auf diese Weise reguliert werden. Besondere Aufmerksamkeit soll der Induktion und Repression des suppressor of cytokine signalling (SOCS)-3-Gens gewidmet werden. Wir haben bereits feststellen können, dass dieses Gen ebenfalls durch IL-1 und IL-6 gegenläufig reguliert wird. Die Analyse der molekularen Grundlagen dieser Genregulation wird ein weiterer Schwerpunkt dieses Teilprojekts sein. Eine strenge Regulation des SOCS3-Gens ist von zentraler Bedeutung für Entzündungsreaktionen, da SOCS3 selbst ein sehr potenter zytoplasmatischer Inhibitor der IL-6-Signaltransduktion ist.
IL-6 Signaltransduktion während der Akutphase-Antwort der Leber
Duration: 01.07.1999 bis 30.06.2002
Nachdem bereits wesentliche Schritte der Interleukin-6 (IL-6)-Signaltransduktion in Hepatozyten aufgeklärt sind, soll nun im Detail die Rolle einzelner zytoplasmatischer Tyrosin-Reste des signalisierenden gpl30-Rezeptorproteins untersucht werden. Diese Tyrosine dienen als Bindungsstellen für Transkriptionsfaktoren der STAT (signal transducer and activator of transcription)-Familie und der Proteintyrosin-Phosphatase SHP2 (SH2 domain containing phosphatase 2). Die IL-6-abhängige Aktivierung dieser Proteine sowie die Geninduktion und Proliferationsregulation über einzelne Rezeptor-Tyrosine soll untersucht werden. Hierbei sollten sich die Rolle und auch das Zusammenspiel der einzelnen Tyrosinreste über gp130 bei der Signaltransduktion evaluieren lassen. Wir konnten bereits zeigen, daß Tyrosin 759 im gpl30 für die SHP2-Phosphorylienurg essentiell ist und einen regulierenden Einfluß auf die Aktivierung von STAT-Faktoren und Akutphase-Protein-Gen-Promotoren haben. Der Mechanismus der SHP2-Aktivierung am Rezeptorkomplex und der Zusammenhang von SHP2- und STAT-Aktivierung sollen genauer analysiert werden. Weitere Untersuchungen sind an den Leukemia inhibitory factor Rezeptor/gpl30- und Oncostatin M-Rezeptor/gpl30-Komplexen vorgesehen. Die genaue Rolle und die Substrate der SHP2 - als Enzym und/oder als Adapterprotein - in der IL-6- Signaltransduktion sind noch nicht bekannt und sollen im Rahmen des Teilprojektes aufgeklärt und identifiziert werden. Ein neuer Abschaltmechanismus für die IL-6-vermittelte Signaltransduktion ist kürzlich durch die Entdeckung der Familie der SCOS (suppressor of cytokine signalling)-Proteine erkannt worden. SOSC-Proteine werden nach IL-6-Stimulation induziert, binden Janus-Kinasen und hemmen auf diese Weise die IL-6-Signaltransduktion. SOCS-Proteine besitzen eine SH2- Domäne und eine SOCS-Box. Es sind Struktur/Funktionsstudien an der SOCS-SH2 Domäne geplant, um Kontaktstellen für Bindungspartner zu definieren. Des Weiteren soll der gegenseitige Einfluß von SOCS-Induktion und SHP2-Aktivierung untersucht werden.
Signaltransduktion der Interleukin-6-Typ-Zytokin-vermittelten Migration von T-Zellen
Duration: 01.12.2000 bis 30.06.2002
Interleukin-6 ist ein Zytokin mit pleiotropem Wirkungsspektrum. Die Funktion des IL‑6 als chemotaktischer Faktor auf T-Zellen ist zwar seit langem bekannt, molekular aber noch nicht untersucht worden. So ist nicht beschrieben, ob IL‑6 direkt chemotaktisch wirkt oder einen nicht identifizierten chemotaktischen Faktor freisetzt. IL‑6 aktiviert den Jak/STAT-Signalweg aber auch die Ras/Raf/MAPK-Kaskade. Es ist unbekannt, über welchen Signalweg IL‑6 die T-Zell-Wanderung initiiert und welche Aktivitäten der für die Zellmigration zentralen Integrin-Signaltransduktion durch IL‑6 moduliert werden. Ziel unseres Forschungsvorhabens ist es, die Mechanismen, die zur IL‑6-vermittelten T-Zellmigration führen, aufzuklären. IL‑6 und seine verwandten Zytokine, die sogenannten IL‑6-Typ-Zytokine (IL‑6, IL-11, LIF, OSM, BSF3, CT1, CNTF), signalisieren alle über Rezeptorkomplexe, die den Signaltransduktor gp130 als gemeinsame Untereinheit enthalten und auch zum Teil gleiche Signalmoleküle aktivieren. Daher besitzen IL‑6-Typ-Zytokine spezifische, aber auch überlappende biologische Aktivitäten. Im geplanten Forschungsprojekt soll untersucht werden, ob auch die IL‑6-Typ-Zytokine IL‑11, LIF und OSM chemotaktische Eigenschaften besitzen. Wir möchten herausfinden, über welche Signalmoleküle des Integrin-Signalweges IL‑6 wirkt, und welche IL‑6-aktivierten Signalwege hierbei genutzt werden. Hierzu sollen niedermolekulare synthetische Inhibitoren und dominant negative Signalmoleküle zum Einsatz gelangen.
Untersuchungen zur dualen Funktion von NF -kB für die Regulation STAT3-abhängiger Gene
Duration: 01.04.2002 bis 30.06.2002
Für die intrazelluläre Vermittlung des durch Bindung von IL-6 an seinen Rezeptor ausgelösten Signals ist der Jak/STAT-Signalweg von zentraler Bedeutung. In letzter Zeit wurde zunehmend deutlich, dass der Jak/STAT-Signalweg durch andere Signalwege beeinflusst und so die IL-6-induzierte Genexpression moduliert wird. So konnte am Beispiel des α2-Makroglobulin (α2M)-Promotors gezeigt werden, dass für die Hemmung der IL-6-induzierten Akutphase durch Interleukin-1β die Kompetition von STAT3 mit NF-κB um überlappende Bindungsstellen am Promotor eine wesentliche Rolle spielt. Interessanterweise fand sich in weiterführenden Promotoranalysen, dass über die NF-κB Bindungsstellen inhibitorisch auf die transkriptionelle Aktivierbarkeit des Promotors Einfluss genommen wird. Andererseits ist jedoch die Präsenz einer funktionellen NF-κB-Bindungsstelle für die transkriptionelle Aktivierung des Promotors essentiell. Gegenstand des vorliegenden Antrags ist die weitergehende Aufklärung der Funktion überlappender NF-κB- und STAT3-DNA-Bindungssequenzen in den Promotoren IL-6-induzierbarer Gene. Hierbei soll insbesondere die duale (inhibitorische und essentielle) Funktion der NF-κB-Bindungsstellen im α2M-Gen-Promotor bei der IL-6-abhängigen Induktion untersucht werden. Des Weiteren soll Hinweisen nachgegangen werden, die annehmen lassen, dass nicht nur das α2M-Gen, sondern einige andere Gene auch, auf diese Weise reguliert werden. Besondere Aufmerksamkeit wird hierbei der Bedeutung einer Kompetition von STAT3 und NF-κB für die Hemmung der IL-6-vermittelten Induktion des suppressor of cytokine signalling (SOCS)-3 Gens durch IL-1β gewidmet.
Studien zur Interleukin-6 und Hepatocyte Growth Factor (HGF)-Signaltransduktion während der Akutphase-Antwort der Leber
Duration: 01.02.1997 bis 30.06.1999
Zytokine sind wichtige Mediatoren akuter und chronischer Entzündungen. Sie entfalten lhre Wirkung über spezifische Rezeptoren auf der Plasmamembran von Zielzellen. Hepatozyten der Leber reagieren in der sogenannten Akutphase-Reaktion des Körpers auf Störungen seiner physiologischen Homöostase auf die Zytokine Interleukin-6 und hepatocyte growth factor (HGF) mit der Synthese und Sekretion von Akutphase-Proteinen (APP). Letztere wirken systemisch über den Blutstrom entzündungshemmend und dienen der Wiederherstellung der Homöostase. In der vergangenen Antragsperiode konnten wir erstmals wesentliche Schritte der Rezeptor-vermittelten Signaltransduktion von IL-6 aufklären. lm vorliegenden Forschungsvorhaben sollen die molekularen Mechanismen, die nach Bindung von IL-6 an seinen Plasmamembran-Rezeptor ablaufen, im Detail untersucht werden. Schwerpunkt dieser Studien soll die Untersuchung der Rolle der zytoplasmatischen Tyrosin-Reste, der Phosphotyrosin-Phosphatase SHP-2 und des Transkriptionsfaktors STAT-3β sein. Da Vorversuche ergeben haben, daß HGF in Leberzellen die APP-Synthese reguliert ohne daß es zur Aktivierung des Jak-/STAT-Weges kommt, soll erforscht werden, über welchen Mechanismus die HGF-abhängige APP-Regulation abläuft.